
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Alert and Action Sheet

Presenting a view controller to notify user of extraordinary event
Or to make a “branching decision” in the UI
Demo: Report bad dropped background images to the user in EmojiArt

Notifications & KVO
Finding out what’s going on
e.g. Keyboard appeared or Document State changed or User Font Size changed
Demo: Use KVO and Notifications instead of Delegation for EmojiArtView change tracking

Application Lifecycle
What the heck are all those methods in AppDelegate.swift?

CS193p

Fall 2017-18

Alerts and Action Sheets
Two kinds of “pop up and ask the user something” mechanisms

Alerts
Action Sheets

Alerts
Pop up in the middle of the screen.
Usually ask questions with only two answers (e.g. OK/Cancel, Yes/No, etc.).
Can be disruptive to your user-interface, so use carefully.
Often used for “asynchronous” problems (“connection reset” or “network fetch failed”).
Can have a text field to get a quick answer (e.g. password)

Action Sheets
Usually slides in from the bottom of the screen on iPhone/iPod Touch, and in a popover on iPad.
Can be displayed from bar button item or from any rectangular area in a view.
Generally asks questions that have more than two answers.
Think of action sheets as presenting “branching decisions” to the user (i.e. what next?).

CS193p

Fall 2017-18

Action Sheet
Alert

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(...)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(UIAlertAction(...))

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(UIAlertAction(
 title: String,
 style: UIAlertActionStyle,
 handler: (action: UIAlertAction) -> Void
))

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(UIAlertAction(
 title: “Orbit Saturn”,
 style: UIAlertActionStyle.default)
 { (action: UIAlertAction) -> Void in
 // go into orbit around saturn
 }
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(UIAlertAction(
 title: “Orbit Saturn”,
 style: UIAlertActionStyle.default)
 { (action: UIAlertAction) -> Void in
 // go into orbit around saturn
 }
)

alert.addAction(UIAlertAction(
 title: “Explore Titan”,
 style: .default)
 { (action: UIAlertAction) -> Void in
 if !self.loggedIn { self.login() }
 // if loggedIn go to titan
 }
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(/* orbit saturn action */)
alert.addAction(/* explore titan action */)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(/* orbit saturn action */)
alert.addAction(/* explore titan action */)

alert.addAction(UIAlertAction(
 title: “Closeup of Sun”,
 style: .destructive)
 { (action: UIAlertAction) -> Void in
 if !loggedIn { self.login() }
 // if loggedIn destroy Cassini by going to Sun
 }
)

alert.addAction(UIAlertAction(
 title: “Cancel”,
 style: .cancel)
 { (action: UIAlertAction) -> Void in
 // do nothing
 }
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(/* orbit saturn action */)
alert.addAction(/* explore titan action */)
alert.addAction(/* destroy with closeup of sun action */)
alert.addAction(/* do nothing cancel action */)

present(alert, animated: true, completion: nil)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(/* orbit saturn action */)
alert.addAction(/* explore titan action */)
alert.addAction(/* destroy with closeup of sun action */)
alert.addAction(/* do nothing cancel action */)

alert.modalPresentationStyle = .popover
let ppc = alert.popoverPresentationController
ppc?.barButtonItem = redeployBarButtonItem

present(alert, animated: true, completion: nil)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Redeploy Cassini”,
 message: “Issue commands to Cassini’s guidance system.”,
 preferredStyle: .actionSheet
)

alert.addAction(/* orbit saturn action */)
alert.addAction(/* explore titan action */)
alert.addAction(/* destroy with closeup of sun action */)
alert.addAction(/* do nothing cancel action */)

alert.modalPresentationStyle = .popover
let ppc = alert.popoverPresentationController
ppc?.barButtonItem = redeployBarButtonItem

present(alert, animated: true, completion: nil)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Login Required”,
 message: “Please enter your Cassini guidance system...”,
 preferredStyle: .alert
)

alert.addAction(UIAlertAction(
 title: “Cancel”,
 style: .cancel)
 { (action: UIAlertAction) -> Void in
 // do nothing
 }
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Login Required”,
 message: “Please enter your Cassini guidance system...”,
 preferredStyle: .alert
)

alert.addAction(/* cancel button action */)

alert.addAction(UIAlertAction(
 title: “Login”,
 style: .default)
 { (action: UIAlertAction) -> Void in
 // get password and log in

 }
)

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Login Required”,
 message: “Please enter your Cassini guidance system...”,
 preferredStyle: .alert
)

alert.addAction(/* cancel button action */)

alert.addAction(UIAlertAction(
 title: “Login”,
 style: .default)
 { (action: UIAlertAction) -> Void in
 // get password and log in

 }
)

alert.addTextField(configurationHandler: { textField in
 textField.placeholder = “Guidance System Password”
 textField.isSecureTextEntry = true
})

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Login Required”,
 message: “Please enter your Cassini guidance system...”,
 preferredStyle: .alert
)

alert.addAction(/* cancel button action */)

alert.addAction(UIAlertAction(
 title: “Login”,
 style: .default)
 { (action: UIAlertAction) -> Void in
 // get password and log in
 if let tf = self.alert.textFields?.first {
 self.loginWithPassword(tf.text)
 }
 }
)

alert.addTextField(configurationHandler: { textField in
 textField.placeholder = “Guidance System Password”
 textField.isSecureTextEntry = true
})

CS193p

Fall 2017-18

var alert = UIAlertController(
 title: “Login Required”,
 message: “Please enter your Cassini guidance system...”,
 preferredStyle: .alert
)

alert.addAction(/* cancel button action */)

alert.addAction(UIAlertAction(
 title: “Login”,
 style: .default)
 { (action: UIAlertAction) -> Void in
 // get password and log in
 if let tf = self.alert.textFields?.first {
 self.loginWithPassword(tf.text)
 }
 }
)

alert.addTextField(configurationHandler: { textField in
 textField.placeholder = “Guidance System Password”
 textField.isSecureTextEntry = true
})

present(alert, animated: true, completion: nil)

CS193p

Fall 2017-18

CS193p

Fall 2017-18

Demo
Alerts

Report bad dropped background images to the user in EmojiArt

CS193p

Fall 2017-18

Controller

Model View

Notification

& KVO

Radio Station Communication

CS193p

Fall 2017-18

Notification
Notifications

The “radio station” from the MVC slides. For Model (or global) to Controller communication.

NotificationCenter
Get the default “notification center” via NotificationCenter.default
Then send it the following message if you want to “listen to a radio station” …
var observer: NSObjectProtocol? // a cookie to later “stop listening” with
observer = NotificationCenter.default.addObserver(

forName: Notification.Name, // the name of the radio station
object: Any?, // the broadcaster (or nil for “anyone”)
queue: OperationQueue? // the queue on which to dispatch the closure below

) { (notification: Notification) -> Void in // closure executed when broadcasts occur
let info: Any? = notification.userInfo
// info is usually a dictionary of notification-specific information

}

CS193p

Fall 2017-18

Notification
What is Notification.Name?

Look this up in the documentation to see what iOS system radio stations you can listen to.
There are a lot.
You will see them as static vars on Notification.Name.
You can make your own radio station name with Notification.Name(String).
More on broadcasting on your own station in a couple of slides …

CS193p

Fall 2017-18

Notification
Example of listening to “radio station broadcasts”

Watching for changes in the size of preferred fonts (user can change this in Settings) ...
let center = NotificationCenter.default
var observer = center.addObserver(

forName: Notification.Name.UIContentSizeCategoryDidChange
object: UIApplication.shared, // or nil
queue: OperationQueue.main // or nil

) { notification in
// re-set the fonts of objects using preferred fonts
// or look at the size category and do something with it …
let c = notification.userInfo?[UIContentSizeCategoryNewValueKey]
// c might be UIContentSizeCategorySmall, for example

}
center.removeObserver(observer) // when you’re done listening

CS193p

Fall 2017-18

Notification
Posting a Notification

NotificationCenter.default.post(
name: Notification.Name, // name of the “radio station”

object: Any?, // who is sending this notification (usually self)
userInfo: [AnyHashable:Any]? = nil // any info you want to pass to station listeners

)

Any closures added with addObserver will be executed.
Either immediately on the same queue as post (if queue was nil).
Or asynchronously by posting the block onto the queue specified with addObserver.

CS193p

Fall 2017-18

KVO
Watching the properties of NSObject subclasses

The basic idea of KVO is to register a closure to invoke when a property value changes
There is some “mechanism” required to make this work
We’re not going to talk about that, but NSObject implements this mechanism
Thus objects that inherit from NSObject can participate

What’s it good for?
Usually used by a Controller to observe either its Model or its View
Not every property works with KVO
A property has to be Key Value Coding-compliant to work
There are a few properties scattered throughout the iOS frameworks that are compliant
For example, UIView’s frame and center work with KVO
So does most of CALayer underneath UIView
Of course, you can make properties in your own NSObject subclasses compliant
(though we don’t have time to talk about how to do any of that right now)
You’re unlikely to use KVO much, but it’s something that’s good to know it exists

CS193p

Fall 2017-18

KVO
How does it work?
var observation = observed.observe(keyPath: KeyPath) { (observed, change) in

// code to execute when the property described by keyPath changes
}
As long as the observation remains in the heap, the closure will stay active.
The change argument to the closure is an NSKeyValueObservedChange.
NSKeyValueObservedChange has the old value and the new value in it.
The syntax for a KeyPath is \Type.property or even \Type.prop1.prop2.prop3.
Swift can infer the Type (since that Type has to make sense for observed).

CS193p

Fall 2017-18

Demo
Notifications and KVO in EmojiArt

Track changes in our document state.

After lecture, I added code to EmojiArtView to let its Controller know about changes
That was done using Delegation (i.e. I added an EmojiArtViewDelegate)
This required some code in the gesture-recognizing code to notify delegate of changes
1. We can remove that change-tracking code by using KVO (on the emojis’ positions)
2. Then we can use NotificationCenter as a replacement for Delegation entirely

CS193p

Fall 2017-18

Application Lifecycle

Running your code,

but no UI events.

CS193p

Fall 2017-18

Application Lifecycle

Running your code,

receiving and processing

UI events.

CS193p

Fall 2017-18

Application Lifecycle

Running your code

for a limited time,

no UI events.

CS193p

Fall 2017-18

Application Lifecycle

Your code not running.

You could be killed.

CS193p

Fall 2017-18

Application Lifecycle

Launch

CS193p

Fall 2017-18

Application Lifecycle

Switch to another application

CS193p

Fall 2017-18

Application Lifecycle

Killed

(notice no code runs

between suspended

and killed)

CS193p

Fall 2017-18

Application Lifecycle

func application(UIApplication,
will/didFinishLaunchingWithOptions:

[UIApplicationLaunchOptionsKey:Any]? = nil)

Your AppDelegate will receive …

… and you can observe …
UIApplicationDidFinishLaunching

The passed dictionary (also in notification.userInfo)

 tells you why your application was launched.

Some examples …

 Someone wants you to open a URL

 You entered a certain place in the world

 You are continuing an activity started on another device

 A notification arrived for you (push or local)

 Bluetooth attached device wants to interact with you

CS193p

Fall 2017-18

Application Lifecycle

func application(UIApplication,
 will/didFinishLaunchingWithOptions:
 [UIApplicationLaunchOptionsKey:Any]? = nil)

Your AppDelegate will receive …

… and you can observe …
UIApplicationDidFinishLaunching

It used to be that you would build your UI here.
For example, you’d instantiate a split view controller

and put a navigation controller inside, then push
your actual content view controller.

But nowadays we use storyboards for all that.
So often you do not implement this method at all.

CS193p

Fall 2017-18

Application Lifecycle

func applicationWillResignActive(UIApplication)

Your AppDelegate will receive …

… and you can observe …
UIApplicationWillResignActive

You will want to “pause” your UI here.
For example, Asteroids would want to pause the asteroids.
This might happen because a phone call comes in.
Or you might be on your way to the background.

CS193p

Fall 2017-18

Application Lifecycle

func applicationDidBecomeActive(UIApplication)

Your AppDelegate will receive …

… and you can observe …
UIApplicationDidBecomeActive

If you have “paused” your UI previously
here’s where you would reactivate things.

CS193p

Fall 2017-18

Application Lifecycle

func applicationDidEnterBackground(UIApplication)

Your AppDelegate will receive …

… and you can observe …
UIApplicationDidEnterBackground

Here you want to (quickly) batten down the hatches.
You only get to run for 30s or so.
You can request more time, but don’t abuse this
(or the system will start killing you instead).

Prepare yourself to be eventually killed here
(probably won’t happen, but be ready anyway).

CS193p

Fall 2017-18

Application Lifecycle

func applicationWillEnterForeground(UIApplication)

Your AppDelegate will receive …

… and you can observe …
UIApplicationWillEnterForeground

Whew! You were not killed from background state!
Time to un-batten the hatches.
Maybe undo what you did in DidEnterBackground.
You will likely soon be made Active.

CS193p

Fall 2017-18

UIApplicationDelegate
Other AppDelegate items of interest …

State Restoration (saving the state of your UI so that you can restore it even if you are killed).
Data Protection (files can be set to be protected when a user’s device’s screen is locked).
Open URL (in Xcode’s Info tab of Project Settings, you can register for certain URLs).
Background Fetching (you can fetch and receive results while in the background).

CS193p

Fall 2017-18

UIApplication
Shared instance

There is a single UIApplication instance in your application
let myApp = UIApplication.shared
It manages all global behavior
You never need to subclass it
It delegates everything you need to be involved in to its UIApplicationDelegate
However, it does have some useful functionality …

Opening a URL in another application
func open(URL)
func canOpenURL(URL) -> Bool

Registering to receive Push Notifications
func (un)registerForRemoteNotifications()
Notifications, both local and push, are handled by the UNNotification framework.

CS193p

Fall 2017-18

UIApplication
Setting the fetch interval for background fetching

You must set this if you want background fetching to work …
func setMinimumBackgroundFetchInterval(TimeInterval)
Usually you will set this to UIApplicationBackgroundFetchIntervalMinimum

Asking for more time when backgrounded
func beginBackgroundTask(withExpirationHandler: (() -> Void)?) -> UIBackgroundTaskIdentifier
Do NOT forget to call endBackgroundTask(UIBackgroundTaskIdentifier) when you’re done!

Turning on the “network in use” spinner (status bar upper left)
var isNetworkActivityIndicatorVisible: Bool // unfortunately just a Bool, be careful

Finding out about things
var backgroundTimeRemaining: TimeInterval { get } // until you are suspended
var preferredContentSizeCategory: UIContentSizeCategory { get } // big fonts or small fonts
var applicationState: UIApplicationState { get } // foreground, background, active

CS193p

Fall 2017-18

Info.plist
Many of your application’s settings are in Info.plist

You can edit this file (in Xcode’s property list editor) by clicking on Info.plist

CS193p

Fall 2017-18

Info.plist
Many of your application’s settings are in Info.plist

You can edit this file (in Xcode’s property list editor) by clicking on Info.plist
Or you can even edit it as raw XML!

CS193p

Fall 2017-18

Info.plist
Many of your application’s settings are in Info.plist

You can edit this file (in Xcode’s property list editor) by clicking on Info.plist
Or you can even edit it as raw XML!
But usually you edit Info.plist settings by clicking on your project in the Navigator …

CS193p

Fall 2017-18

Capabilities
Some features require enabling

These are server and interoperability features
Like iCloud, Game Center, etc.

Switch on in Capabilities tab
Inside your Project Settings

Not enough time to cover these!
But check them out!
Many require full Developer Program membership
Familiarize yourself with their existence

CS193p

Fall 2017-18

Demo Code

Download the demo code from today’s lecture.

