
CS193p

Fall 2017-18

Stanford CS193p
Developing Applications for iOS

Fall 2017-18

CS193p

Fall 2017-18

Today
Drag and Drop

Transferring information around within and between apps.
EmojiArt Demo — Drag and drop an image to get our EmojiArt masterpieces started.

UITableView and UICollectionView
Ways to display arbitrary amounts of data in a list or collection.

CS193p

Fall 2017-18

Drag and Drop
Very interoperable way to move data around

Between apps on iPad and within an app on all iOS 11 devices.
Your app continues to work normally while drag and drop is going on.
Multitouch allows some fingers to be doing drag and drop and other fingers working your app.
New mulittasking UI in iOS 11 makes drag and drop really useful.

CS193p

Fall 2017-18

Drag and Drop
Interactions

A view “signs up” to participate in drag and/or drop using an interaction.
It’s kind of like a “gesture recognizer” for drag and drop.
let drag/dropInteraction = UIDrag/DropInteraction(delegate: theDelegate)
view.addInteraction(drag/dropInteraction)
Now the theDelegate will get involved if a drag or drop occurs in the view.

CS193p

Fall 2017-18

Drag and Drop
Starting a drag
Now, when the user makes a dragging gesture, the delegate gets …
func dragInteraction(_ interaction: UIDragInteraction,

itemsForBeginning session: UIDragSession
) -> [UIDragItem]
… and can return the items it is willing to have dragged from the view.
Returning an empty array means “don’t drag anything after all.”

A UIDragItem is created like this …
let dragItem = UIDragItem(itemProvider: NSItemProvider(object: provider))
Providers: NSAttributedString, NSString, UIImage, NSURL, UIColor, MKMapItem, CNContact.
You can drag your own types of data, but that’s beyond the scope of this course.
Note that some of these types start with NS … you might have to use as? to cast them.

You can also provide an object that will be passed to drop targets inside your own app …
dragItem.localObject = someObject

CS193p

Fall 2017-18

Drag and Drop
Adding to a drag
Even in the middle of a drag, users can add more to their drag if you implement …
func dragInteraction(_ interaction: UIDragInteraction,

itemsForAddingTo session: UIDragSession
) -> [UIDragItem]
… and returns more items to drag.

CS193p

Fall 2017-18

Drag and Drop
Accepting a drop
When a drag moves over a view with a UIDropInteraction, the delegate gets …
func dropInteraction(_ interaction: UIDropInteraction,

canHandle session: UIDragSession
) -> Bool
… at which point the delegate can refuse the drop before it even gets started.

To figure that out, the delegate can ask what kind of objects can be provided …
let stringAvailable = session.canLoadObjects(ofClass: NSAttributedString.self)
let imageAvailable = session.canLoadObjects(ofClass: UIImage.self)
… and refuse the drop if it isn’t to your liking.

CS193p

Fall 2017-18

Drag and Drop
Accepting a drop

If you don’t refuse it in canHandle:, then as the drag progresses, you’ll start getting …
func dropInteraction(_ interaction: UIDropInteraction,

sessionDidUpdate session: UIDragSession
) -> UIDropProposal
… to which you will respond with UIDropProposal(operation: .copy/.move/.cancel).
.cancel means the drop would be refused
.copy means drop would be accepted
.move means drop would be accepted and would move the item (only for drags within an app)

If it matters, you can find out where the touch is with session.location(in: view).

CS193p

Fall 2017-18

Drag and Drop
Accepting a drop
If all that goes well and the user let’s go of the drop, you get to go fetch the data …
func dropInteraction(_ interaction: UIDropInteraction,

performDrop session: UIDropSession
)

You will implement this method by calling loadObjects(ofClass:) on the session.
This will go and fetch the data asynchronously from whomever the drag source is.
session.loadObjects(ofClass: NSAttributedString.self) { theStrings in

// do something with the dropped NSAttributedStrings
}
The passed closure will be executed some time later on the main thread.
You can call multiple loadObjects(ofClass:) for different classes.
You don’t usually do anything else in dropInteraction(performDrop:).

CS193p

Fall 2017-18

Drag and Drop
Demo

We’re going to start a new app: EmojiArt
The first thing we’ll do is allow drag and drop to create our EmojiArt document background

CS193p

Fall 2017-18

Table and Collection Views
UITableView and UICollectionView

These are UIScrollView subclasses used to display unbounded amounts of information.
Table View presents the information in a long (possibly sectioned) list.
Collection View presents the information in a 2D format (usually “flowing” like text flows).
They are very similar in their API, so we will learn about them at the same time.

CS193p

Fall 2017-18

UITableView

Table and Collection Views
The list can be very simple …

CS193p

Fall 2017-18

UITableView

Table and Collection Views

Or divided into sections …

CS193p

Fall 2017-18

UITableView

Table and Collection Views

It can show simple ancillary information …

Subtitle style

CS193p

Fall 2017-18

UITableView

Left Detail style

Table and Collection Views

It can show simple ancillary information …

CS193p

Fall 2017-18

UITableView

Right Detail style

Table and Collection Views

It can show simple ancillary information …

CS193p

Fall 2017-18

UITableView

Basic style

Table and Collection Views

It can show simple ancillary information …

CS193p

Fall 2017-18

UITableView

Custom style

Table and Collection Views

Or arbitrarily complex information …

CS193p

Fall 2017-18

UITableView

Table and Collection Views

The rows can also be Grouped …
(but usually only when the information in the table is fixed)

CS193p

Fall 2017-18

UICollectionView

Table and Collection Views
Is configurable to show information in any 2D arrangement.
But by default it “flows” the items it shows like text flows.
There is only “custom” layout of information.

CS193p

Fall 2017-18

UICollectionView

Table and Collection Views
Is configurable to show information in any 2D arrangement.
But by default it “flows” the items it shows like text flows.
There is only “custom” layout of information.
Like Table View, can also be divided into sections …

CS193p

Fall 2017-18

Table and Collection Views
How do you get one?

As usual, we drag them into our storyboard …

There are also “prepackaged” MVCs whose entire view is the table or collection view …

If you are going to have your entire view be the table or collection view, use the latter.

CS193p

Fall 2017-18

Table and Collection Views
Where does the data come from?

The most important thing to understand about both of them is where they get their data.
Remember that, per MVC, “views are not allowed to own their data”.
So we can’t just somehow set the data in some var.
Instead, we set a var called dataSource.
The type of the dataSource var is a protocol with methods that supply the data.
dataSource is exactly like a delegate in how it works.
Table View and Collection View also have a delegate.
Their delegate controls how they look, not what data they display (that’s the dataSource).

CS193p

Fall 2017-18

Table and Collection Views
Setting the dataSource and delegate

In UITableView …
var dataSource: UITableViewDataSource
var delegate: UITableViewDelegate
In UICollectionView …
var dataSource: UICollectionViewDataSource
var delegate: UICollectionViewDelegate

These are automatically set for you if you use the prepackaged MVCs.
If you drag out a UITableView or UICollectionView, you must set these vars yourself.
99.99% of the time, these vars will want to be set to the Controller of the MVC.

CS193p

Fall 2017-18

Table and Collection Views
The UITableView/CollectionViewDataSource protocol

The “data retrieving” protocol has many methods.
But these 3 are the core (UITableView abbreviated to UITV and UICollectionView to UICV) …
UITableView
func numberOfSections(in tableView: UITV) -> Int

UICollectionView
func numberOfSections(in collectionView: UICV) -> Int

CS193p

Fall 2017-18

Table and Collection Views
The UITableView/CollectionViewDataSource protocol

The “data retrieving” protocol has many methods.

But these 3 are the core (UITableView abbreviated to UITV and UICollectionView to UICV) …

UITableView
func numberOfSections(in tableView: UITV) -> Int
func tableView(_ tv: UITV, numberOfRowsInSection section: Int) -> Int

UICollectionView
func numberOfSections(in collectionView: UICV) -> Int
func collectionView(_ cv: UICV, numberOfItemsInSection section: Int) -> Int

CS193p

Fall 2017-18

Table and Collection Views
The UITableView/CollectionViewDataSource protocol

The “data retrieving” protocol has many methods.

But these 3 are the core (UITableView abbreviated to UITV and UICollectionView to UICV) …

UITableView
func numberOfSections(in tableView: UITV) -> Int
func tableView(_ tv: UITV, numberOfRowsInSection section: Int) -> Int
func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell
UICollectionView
func numberOfSections(in collectionView: UICV) -> Int
func collectionView(_ cv: UICV, numberOfItemsInSection section: Int) -> Int
func collectionView(_ cv: UICV, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell

IndexPath specifies which row (in TV) or item (in CV) we’re talking about.
In both, you get the section the row or item is in from indexPath.section.
In TV, you get which row from indexPath.row; in CV you get which item from indexPath.item.
CV might seem like rows and columns, but it’s not, it’s just items “flowing” like text.

CS193p

Fall 2017-18

Loading up Cells
Putting data into the UI

Let’s focus on how we implement that last method.
We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
let cell = tv.dequeueReusableCell(withIdentifier: “MyCellId”, for: indexPath)

}

This gets the UITableViewCell we are going to load up with our Model data and return.
The UITableView will then use that UITableViewCell to draw the row at the given indexPath.
We need to understand a few things to parse this line of code …

CS193p

Fall 2017-18

Loading up Cells
Cell Reuse

A UITableView might have 1000s of rows (all your Music Library songs maybe?).
If it had to create a UIView for all of them, it would be very inefficient.
So it reuses the cells.
When a UITableViewCell scrolls off the screen, it gets put in a pool to be reused.
The dequeueReusableCell(withIdentifier:) method grabs one out of that reuse pool.
But what if the reuse pool is empty (like when the table first appears)?

CS193p

Fall 2017-18

Loading up Cells
Cell Creation

How do new (non-reused) cells get created?

They get created by copying a prototype cell you configure in your storyboard.

Prototype #1 (a Basic cell)

Prototype #2 (a Custom cell)

CS193p

Fall 2017-18

Loading up Cells
Cell Creation

How do new (non-reused) cells get created?

They get created by copying a prototype cell you configure in your storyboard.

Each prototype has an identifier you set in the Inspector.

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tv.dequeueReusableCell(withIdentifier: “MyCellId”, for: indexPath)

}

So now we can understand this line of code.
It is reusing a UITableViewCell with the given identifier if possible.
Otherwise it is making a copy of the prototype in the storyboard.
The fact that cells are reused has serious implications for multithreading!
By the time something returns from another thread, a cell might have been reused.

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

}

 , for: indexPath)let cell = tv.dequeueReusableCell(withIdentifier: prototype
let prototype = decision ? “FoodCell” : “CustomFoodCell”

The decision can be made based on many factors.
Usually its based on the indexPath (i.e. which row we’re displaying here).
But it might also be based on the data in our Model at that indexPath.
Some data might be an image, whereas other data is text, etc.

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let prototype = decision ? “FoodCell” : “CustomFoodCell”
 let cell = tv.dequeueReusableCell(withIdentifier: prototype, for: indexPath)

}

So what API can we use to configure this cell that we just reused/created?

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let prototype = decision ? “FoodCell” : “CustomFoodCell”
 let cell = tv.dequeueReusableCell(withIdentifier: prototype, for: indexPath)

}

So what API can we use to configure this cell that we just reused/created?
Well, for UITableView only, the default UITableViewCell has a few basic things …

textLabel, detailTextLabel and imageView

cell.textLabel?.text = food(at: indexPath)
cell.detailTextLabel?.text = emoji(at: indexPath)

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let prototype = decision ? “FoodCell” : “CustomFoodCell”
 let cell = tv.dequeueReusableCell(withIdentifier: prototype, for: indexPath)

}

So what API can we use to configure this cell that we just reused/created?
Well, for UITableView only, the default UITableViewCell has a few basic things …

textLabel, detailTextLabel and imageView
But for UICollectionView and for custom UITableViewCells, WE have to provide the API.
Let’s see how we do that …

CS193p

Fall 2017-18

Loading up Cells
Custom UITableViewCell subclass

When we put custom UI into a UITableViewCell prototype, we probably need outlets to it.

{
@IBOutlet var name: UILabel
@IBOutlet var emoji: UILabel
@IBOutlet var category: UILabel
@IBOutlet var details: UILabel

}

CS193p

Fall 2017-18

Loading up Cells
Custom UITableViewCell subclass

When we put custom UI into a UITableViewCell prototype, we probably need outlets to it.
Can we hook them up directly to our Controller?

{
@IBOutlet var name: UILabel
@IBOutlet var emoji: UILabel
@IBOutlet var category: UILabel
@IBOutlet var details: UILabel

}

class MyTVC: UITableViewController

CS193p

Fall 2017-18

Loading up Cells
Custom UITableViewCell subclass

When we put custom UI into a UITableViewCell prototype, we probably need outlets to it.
Can we hook them up directly to our Controller?
No, we can’t, because there might be multiple rows with that type of cell.
They can’t all be hooked up to the same single outlet!

{
@IBOutlet var name: UILabel
@IBOutlet var emoji: UILabel
@IBOutlet var category: UILabel
@IBOutlet var details: UILabel

}

class MyTVC: UITableViewController

CS193p

Fall 2017-18

Loading up Cells
Custom UITableViewCell subclass

When we put custom UI into a UITableViewCell prototype, we probably need outlets to it.
Can we hook them up directly to our Controller?
No, we can’t, because there might be multiple rows with that type of cell.
They can’t all be hooked up to the same single outlet!
Instead, we have to subclass UITableViewCell and put the outlets in there.

{
@IBOutlet var name: UILabel
@IBOutlet var emoji: UILabel
@IBOutlet var category: UILabel
@IBOutlet var details: UILabel

}

class MyTVC: UITableViewCell

CS193p

Fall 2017-18

Loading up Cells
Custom UITableViewCell subclass

When we put custom UI into a UITableViewCell prototype, we probably need outlets to it.
Can we hook them up directly to our Controller?
No, we can’t, because there might be multiple rows with that type of cell.
They can’t all be hooked up to the same single outlet!
Instead, we have to subclass UITableViewCell and put the outlets in there.

{
@IBOutlet var name: UILabel
@IBOutlet var emoji: UILabel
@IBOutlet var category: UILabel
@IBOutlet var details: UILabel

}

class MyTVC: UITableViewCell

Then we inspect the cell in the Identity Inspector
and change its class from UITableViewCell to MyTVC

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let prototype = decision ? “FoodCell” : “CustomFoodCell”
 let cell = tv.dequeueReusableCell(withIdentifier: prototype, for: indexPath)

}

In order to get at those outlets, we need to cast our UITableViewCell to our subclass.

if let myTVCell = cell as? MyTVC {

}

CS193p

Fall 2017-18

Loading up Cells
Implementing cellForRowAt

Let’s focus on how we implement that last method.

We’ll look at it in the context of UITableView, but it’s the same for UICollectionView.

func tableView(_ tv: UITV, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let prototype = decision ? “FoodCell” : “CustomFoodCell”
 let cell = tv.dequeueReusableCell(withIdentifier: prototype, for: indexPath)

}

In order to get at those outlets, we need to cast our UITableViewCell to our subclass.
Then we can access its outlets (or any other API it wants to make public).
In Collection View, we always have to do this (there are only “Custom” cells).
In Table View, we do it when the simple Basic, Subtitle, etc. styles aren’t enough.

if let myTVCell = cell as? MyTVC {

}
myTVC.name = food(at: indexPath); myTVC.emoji = emoji(at: indexPath)

CS193p

Fall 2017-18

Static Table View
Using Table View purely for UI layout

Sometimes we just use a table view to lay out UI elements.
A fantastic example of this is the iOS Settings app.
In this case, you do not need to do any of the UITableViewDataSource stuff.
And you can connect outlets directly to your Controller (because there’s only one of each cell).
To do this, just set your UITableView to have Static Cells instead of Dynamic Prototypes.
Usually static table views are Style Grouped.
Then pick the section in the Document Outline you want to add cells to and add them.

CS193p

Fall 2017-18

How to segue
from a table
view row …

CS193p

Fall 2017-18

CS193p

Fall 2017-18

Note that this row has a
Detail Disclosure Accessory.

We can segue from the row and/or
from the Detail Disclosure Accssory.

CS193p

Fall 2017-18

CS193p

Fall 2017-18

Just ctrl-drag as usual!

CS193p

Fall 2017-18

CS193p

Fall 2017-18

Then select the kind
of segue you want.

CS193p

Fall 2017-18

CS193p

Fall 2017-18

You can select the segue for the
Detail Disclosure Accessory too.

CS193p

Fall 2017-18

CS193p

Fall 2017-18

This creates a
perfectly normal

segue.

CS193p

Fall 2017-18

CS193p

Fall 2017-18

You can inspect it.

CS193p

Fall 2017-18

CS193p

Fall 2017-18

And set its identifier.

CS193p

Fall 2017-18

And set its identifier.

Let’s take a look at

prepare(for segue:sender:) …

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …

You can see now why sender is Any

Sometimes it’s a UIButton, sometimes it’s a UITableViewCell

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:

 default: break
 }
 }
}

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …

So you will need to cast sender with as? to turn it into a UITableViewCell
If you have a custom UITableViewCell subclass, you can cast it to that if it matters

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:
 if let cell = sender as? MyTableViewCell {

 }
 default: break
 }
 }
}

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …

Usually we will need the IndexPath of the UITableViewCell

Because we use that to index into our internal data structures

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:
 if let cell = sender as? MyTableViewCell,
 let indexPath = tableView.indexPath(for: cell) {

 }
 default: break
 }
 }
}

indexPath(for cell:)
does not accept Any.

It has to be a

UITableViewCell of some sort.

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …

Now we just get our destination MVC as the proper class as usual …

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:
 if let cell = sender as? MyTableViewCell,
 let indexPath = tableView.indexPath(for: cell),
 let seguedToMVC = segue.destination as? MyVC {

 }
 default: break
 }
 }
}

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …
func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:
 if let cell = sender as? MyTableViewCell,
 let indexPath = tableView.indexPath(for: cell),
 let seguedToMVC = segue.destination as? MyVC {
 seguedToMVC.publicAPI = data[indexPath.section][indexPath.row]
 }
 default: break
 }
 }
}

and then get data from our internal data structure using the IndexPath’s section and row

CS193p

Fall 2017-18

Table View Segues
Preparing to segue from a row in a table view

The sender argument to prepareForSegue is the UITableViewCell of that row …

and then get data from our internal data structure using the IndexPath’s section and row

and use that information to prepare the segued-to API using its public API

func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if let identifier = segue.identifier {
 switch identifier {
 case “XyzSegue”: // handle XyzSegue here
 case “AbcSegue”:
 if let cell = sender as? MyTableViewCell,
 let indexPath = tableView.indexPath(for: cell),
 let seguedToMVC = segue.destination as? MyVC {
 seguedToMVC.publicAPI = data[indexPath.section][indexPath.row]
 }
 default: break
 }
 }
}

CS193p

Fall 2017-18

Collection View Segue
Seguing from Collection View cells

Probably best done from this UICollectionViewDelegate method …
func collectionView(collectionView: UICV, didSelectItemAtIndexPath indexPath: IndexPath)
Use performSegue(withIdentifier:) from there.
This strategy could also be used for UITableView.

CS193p

Fall 2017-18

Table and Collection View
What if your Model changes?
func reloadData()
Causes it to call numberOfSectionsInTableView and numberOfRows/ItemsInSection

all over again and then cellForRow/ItemAt on each visible row or item
Relatively heavyweight, but if your entire data structure changes, that’s what you need
If only part of your Model changes, there are lighter-weight reloaders, for example ...
func reloadRows(at indexPaths: [IndexPath], with animation: UITableViewRowAnimation)
… among others and of course similar methods for Collection View.

CS193p

Fall 2017-18

Table and Collection View
Controlling the height of rows in a Table View

Row height can be fixed (UITableView’s var rowHeight: CGFloat)
Or it can be determined using autolayout (rowHeight = UITableViewAutomaticDimension)
If you do automatic, help the table view out by setting estimatedRowHeight to something
The UITableView’s delegate can also control row heights …
func tableView(UITableView, {estimated}heightForRowAt indexPath: IndexPath) -> CGFloat
Beware: the non-estimated version of this could get called A LOT if you have a big table

Controlling the size of cells in a Collection View
Cell size can be fixed in the storyboard.
You can also drive it from autolayout similar to table view.
Or you can return the size from this delegate method …
func collectionView(_ collectionView: UICollectionView,

layout collectionViewLayout: UICollectionViewLayout,
sizeForItemAt indexPath: IndexPath

) -> CGSize

CS193p

Fall 2017-18

Table View Headers
Setting a header for each section

If you have a multiple-section table view, you can set a header (or footer) for each.
There are methods to set this to be a custom UIView.
But usually we just supply a String for the header using this method …
func tableView(_ tv: UITV, titleForHeaderInSection section: Int) -> String?

CS193p

Fall 2017-18

Collection View Headers
Headers and footers are a bit more difficult in Collection View

You can’t just specify them as Strings.
First you have to “turn them on” in the storyboard.
They are reusable (like cells are), so you have to make a UICollectionReusableView subclass.
You put your UILabel or whatever for your header, then hook up an outlet.
Then you implement this dataSource method to dequeue and provide a header.
func collectionView(_ collectionView: UICollectionView,

viewForSupplementaryElementOfKind kind: String,
at indexPath: IndexPath

) -> UICollectionReusableView
Use dequeueReusableSupplementaryView(ofKind:withReuseIdentifier:for:) in there.
kind will be UICollectionElementKindSectionHeader or Footer.

CS193p

Fall 2017-18

Other Methods
There are dozens of other methods in these classes

Controlling the look (separator style and color, default row height, etc.).
Getting cell information (cell for index path, index path for cell, visible cells, etc.).
Scrolling to a row (UITableView/UICollectionView are subclasses of UIScrollView).
Selection management (allows multiple selection, getting the selected row, etc.).
Moving, inserting and deleting rows, etc.
As always, part of learning the material in this course is studying the documentation

CS193p

Fall 2017-18

Example Code
FoodForThought

Example code doing most of what has been described will be posted to the class website.
It’s in an app called FoodForThought.
You’ll see all these things in action.
And, of course, we will have an extensive demo of all this …

CS193p

Fall 2017-18

Demo Code
Download the demo code from today’s lecture.

