
CS193p

Winter 2017

Stanford CS193p
Developing Applications for iOS

Winter 2017

CS193p

Winter 2017

Today
Multiple MVCs

Demo: Emotions in FaceIt

View Controller Lifecycle
Tracking what happens to an MVC over time
Demo: VCL in FaceIt

Time Permitting
Memory Management (especially vis-a-vis closures)

CS193p

Winter 2017

Demo
Emotions in FaceIt

This is all best understood via demonstration
We will create a new Emotions MVC
The Emotions will be displayed segueing to the Face MVC
We’ll put the MVCs into navigation controllers inside split view controllers
That way, it will work on both iPad and iPhone devices

CS193p

Winter 2017

View Controller Lifecycle
View Controllers have a “Lifecycle”

A sequence of messages is sent to a View Controller as it progresses through its “lifetime”.

Why does this matter?
You very commonly override these methods to do certain work.

The start of the lifecycle …
Creation.
MVCs are most often instantiated out of a storyboard (as you’ve seen).
There are ways to do it in code (rare) as well which we may cover later in the quarter.

What then?
Preparation if being segued to.
Outlet setting.
Appearing and disappearing.
Geometry changes.
Low-memory situations.

CS193p

Winter 2017

View Controller Lifecycle
After instantiation and outlet-setting, viewDidLoad is called

This is an exceptionally good place to put a lot of setup code.
It’s better than an init because your outlets are all set up by the time this is called.

override func viewDidLoad() {
super.viewDidLoad() // always let super have a chance in all lifecycle methods
// do some setup of my MVC

}

One thing you may well want to do here is update your UI from your Model.
Because now you know all of your outlets are set.

But be careful because the geometry of your view (its bounds) is not set yet!
At this point, you can’t be sure you’re on an iPhone 5-sized screen or an iPad or ???.
So do not initialize things that are geometry-dependent here.

CS193p

Winter 2017

View Controller Lifecycle
Just before your view appears on screen, you get notified
func viewWillAppear(_ animated: Bool) // animated is whether you are appearing over time

Your view will only get “loaded” once, but it might appear and disappear a lot.
So don’t put something in this method that really wants to be in viewDidLoad.
Otherwise, you might be doing something over and over unnecessarily.

Do something here if things your display is changing while your MVC is off-screen.

You could use this to optimize performance by waiting until this method is called
(as opposed to viewDidLoad) to kick off an expensive operation (probably in another thread).

Your view’s geometry is set here, but there are other places to react to geometry.

There is a “did” version of this as well
func viewDidAppear(_ animated: Bool)

CS193p

Winter 2017

View Controller Lifecycle
And you get notified when you will disappear off screen too

This is where you put “remember what’s going on” and cleanup code.
override func viewWillDisappear(_ animated: Bool) {

super.viewWillDisappear(animated) // call super in all the viewWill/Did... methods
// do some clean up now that we’ve been removed from the screen
// but be careful not to do anything time-consuming here, or app will be sluggish
// maybe even kick off a thread to do stuff here (again, we’ll cover threads later)

}

There is a “did” version of this too
func viewDidDisappear(_ animated: Bool)

CS193p

Winter 2017

View Controller Lifecycle
Geometry changed?
Most of the time this will be automatically handled with Autolayout.

You can reset the frames of your subviews here or set other geometry-related properties.

These methods might be called more often than you’d imagine
(e.g. for pre- and post- animation arrangement, etc.).

So don’t do anything in here that can’t properly (and efficiently) be done repeatedly.

Between “will” and “did”, autolayout will happen.

But you can get involved in geometry changes directly with these methods …
func viewWillLayoutSubviews()
func viewDidLayoutSubviews()
They are called any time a view’s frame changed and its subviews were thus re-layed out.
For example, autorotation (more on this in a moment).

CS193p

Winter 2017

View Controller Lifecycle
Autorotation

Usually, the UI changes shape when the user rotates the device between portrait/landscape
You can control which orientations your app supports in the Settings of your project

But if you, for example, want to participate in the rotation animation, you can use this method …

func viewWillTransition(
to size: CGSize,
with coordinator: UIViewControllerTransitionCoordinator

)

Almost always, your UI just responds naturally to rotation with autolayout

The coordinator provides a method to animate alongside the rotation animation
We are not going to be talking about animation, though, for a couple of weeks
So this is just something to put in the back of your mind (i.e. that it exists) for now

CS193p

Winter 2017

View Controller Lifecycle
In low-memory situations, didReceiveMemoryWarning gets called ...

This rarely happens, but well-designed code with big-ticket memory uses might anticipate it.
Examples: images and sounds.
Anything “big” that is not currently in use and can be recreated relatively easily

should probably be released (by setting any pointers to it to nil)

CS193p

Winter 2017

View Controller Lifecycle
awakeFromNib()

This method is sent to all objects that come out of a storyboard (including your Controller).
Happens before outlets are set! (i.e. before the MVC is “loaded”)
Put code somewhere else if at all possible (e.g. viewDidLoad or viewWillAppear).

CS193p

Winter 2017

View Controller Lifecycle
Summary

Instantiated (from storyboard usually)
awakeFromNib
segue preparation happens
outlets get set
viewDidLoad
These pairs will be called each time your Controller’s view goes on/off screen …

viewWillAppear and viewDidAppear
viewWillDisappear and viewDidDisappear

These “geometry changed” methods might be called at any time after viewDidLoad …
viewWillLayoutSubviews (… then autolayout happens, then …) viewDidLayoutSubviews

If memory gets low, you might get …
didReceiveMemoryWarning

CS193p

Winter 2017

Coming Up
Now, a Demo …

Let’s plop some print statements into the View Controller Lifecycle methods in FaceIt
Then we can watch as Face and Emotions MVCs go through their lifecycle

Time Permitting
Memory Management (especially vis-a-vis closures)

Wednesday
Extensions, Protocols, Delegation
UIScrollView

Friday
Instruments (Performance Analysis Tool)

Next Week
Multithreading
Table View

CS193p

Winter 2017

Memory Management
Automatic Reference Counting

Reference types (classes) are stored in the heap.
How does the system know when to reclaim the memory for these from the heap?
It “counts references” to each of them and when there are zero references, they get tossed.
This is done automatically.
It is known as “Automatic Reference Counting” and it is NOT garbage collection.

Influencing ARC
You can influence ARC by how you declare a reference-type var with these keywords …
strong
weak
unowned

CS193p

Winter 2017

Memory Management
strong
strong is “normal” reference counting
As long as anyone, anywhere has a strong pointer to an instance, it will stay in the heap

weak
weak means “if no one else is interested in this, then neither am I, set me to nil in that case”
Because it has to be nil-able, weak only applies to Optional pointers to reference types
A weak pointer will NEVER keep an object in the heap
Great example: outlets (strongly held by the view hierarchy, so outlets can be weak)

unowned
unowned means “don’t reference count this; crash if I’m wrong”
This is very rarely used
Usually only to break memory cycles between objects (more on that in a moment)

CS193p

Winter 2017

Closures
Capturing

Closures are stored in the heap as well (i.e. they are reference types).
They can be put in Arrays, Dictionarys, etc. They are a first-class type in Swift.

What is more, they “capture” variables they use from the surrounding code into the heap too.
Those captured variables need to stay in the heap as long as the closure stays in the heap.
This can create a memory cycle …

CS193p

Winter 2017

addUnaryOperation(“✅”, operation: { (x: Double) -> Double in
 display.textColor = UIColor.green
 return sqrt(x)
})

Closures
Example

Imagine we added public API to allow a unaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a unaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “green square root”.
This operation will do square root, but it will also turn the display green.

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Winter 2017

addUnaryOperation(“✅”) { (x: Double) -> Double in
 display.textColor = UIColor.green
 return sqrt(x)
}

Closures
Example

Imagine we added public API to allow a unaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a unaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “green square root”.
This operation will do square root, but it will also turn the display green.

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Winter 2017

addUnaryOperation(“✅”) { (x: Double) -> Double in
 display.textColor = UIColor.green
 return sqrt(x)
}

Closures
Example

Imagine we added public API to allow a unaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a unaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “green square root”.
This operation will do square root, but it will also turn the display green.

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Winter 2017

Closures
Example

Imagine we added public API to allow a unaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a unaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “green square root”.
This operation will do square root, but it will also turn the display green.

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 display.textColor = UIColor.green

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

But this will not compile.

CS193p

Winter 2017

Closures
Example

Imagine we added public API to allow a unaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a unaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “green square root”.
This operation will do square root, but it will also turn the display green.

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 display.textColor = UIColor.green self.

Swift forces you to put self. here to remind you that self will get captured!
The Model and the Controller now point to each other through the closure.
And thus neither can ever leave the heap. This is called a memory cycle.

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

self .display.textColor = UIColor.green

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

self .display.textColor = UIColor.green
[<special variable declarations>] in

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 .display.textColor = UIColor.greenme
me = self[] in

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.greenme

me = self[] in

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.green

[self] in
self

= self

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.green

[self] in
self

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 .display.textColor = UIColor.green
[selfweak] in

self

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 .display.textColor = UIColor.green
[selfweak] in

self?

CS193p

Winter 2017

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“✅”) {

 return sqrt($0)
}

 .display.textColor = UIColor.green
[selfweak] in

?
weakSelf =

weakSelf

CS193p

Winter 2017

Demo
Green Square Root

Let’s do what we just talked about and see it in action in our Calculator

