Chapter 12

12. Understanding Android
Application and Activity Lifecycles

In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on it
remain responsive to the user at all times. In order to achieve this, Android is given full control over the lifecycle
and state of both the processes in which the applications run, and the individual components that comprise
those applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management

Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate in order to free up memory, the system takes
into consideration both the priority and state of all currently running processes, combining these factors to
create what is referred to by Google as an importance hierarchy. Processes are then terminated starting with
the lowest priority and working up the hierarchy until sufficient resources have been liberated for the system to
function.

12.2 Android Process States

Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

79

Understanding Android Application and Activity Lifecycles

Foreground Process | Highest Priority

Visible Process

Service Process

Background Process

Empty Process Lowest Priority

Figure 12-1
12.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

 Hosts an activity with which the user is currently interacting.
» Hosts a Service connected to the activity with which the user is interacting.

 Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

« Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

« Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user, and does not host a Service
that qualifies for Service Process status. Processes that fall into this category are at high risk of termination in the
event that additional memory needs to be freed for higher priority processes. Android maintains a dynamic list
of background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

80

Understanding Android Application and Activity Lifecycles
12.2.5 Empty Process

Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

12.3 Inter-Process Dependencies

The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack

For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
12-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. In the event that resources
become constrained, the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

81

Understanding Android Application and Activity Lifecycles

{ Starting Activity 1

* Push
r N

Activity exits or
s ~ | Pop qat
Active Activity ~ |———3- USEr Navigates
. to "Previous Active
Activity"
X "E' Previous Active
E 21 Activity
on |
> 4)
= Activity
g - >
L
L
]
5 Killed Terminated
g [Oldest Activity }——)rm free
memory
L ~
Figure 12-2
12.6 Activity States

An activity can be in one of a number of different states during the course of its execution within an application:

Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

Paused - The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

Stopped - The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

Killed - The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes

So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely
the movement of an activity between the foreground and background, and termination of an activity by the
runtime system in order to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change and this involves a change to the device configuration.

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

12.8 Handling State Change

If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes’.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities in order to free
up memory. Process state is taken into consideration by the runtime system when deciding whether a process is
a suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

83

Chapter 13

13. Handling Android Activity State
Changes

Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

13.1 New vs. Old Lifecycle Techniques

Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

13.2 The Activity and Fragment Classes

With few exceptions, activities and fragments in an application are created as subclasses of the Android
AppCompatActivity class and Fragment classes respectively.

Consider, for example, the AndroidSample project created in “Creating an Example Android App in Android
Studio”. Load this project into the Android Studio environment and locate the MainActivity.java file (located in
app -> java -> com.<your domain>.androidsample). Having located the file, double-click on it to load it into the
editor where it should read as follows:

package com.ebookfrenzy.androidsample;
import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.view.View;

import android.widget.EditText;

85

Handling Android Activity State Changes

import android.widget.TextView;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText);
TextView textView = findViewById (R.id.textView);

if (!dollarText.getText().toString() .equals("")) {

Float dollarValue = Float.valueOf (dollarText.getText () .toString()):;
Float euroValue = dollarValue * 0.85F;
textView.setText (euroValue.toString());

} else {

textView.setText (R.string.no_value string);

}

When the project was created, we instructed Android Studio also to create an initial activity named MainAc-
tivity. As is evident from the above code, the MainActivity class is a subclass of the AppCompatActivity class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.java file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 13-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

Hierarchy: Class MainActivity o -
A W A lIScope|Alv|S F E RN X
c Object (java.lang)
€ Context (android.content)
c ContextWrapper (android.content)
< ContextThemeWrapper (android.view)
€, = Activity (android.app)
< ComponentActivity (androidx.core.app)
c ComponentActivity (androidx.activity)
€} = FragmentActivity (androidx.fragment.app)
c AppCompatActivity (androidx.appcompat.app)

Figure 13-1

The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the

86

Handling Android Activity State Changes
necessary functionality within them in order to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this
method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

13.3 Dynamic State vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently Kills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

13.4 The Android Lifecycle Methods

As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

« onCreate(Bundle savedInstanceState) — The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

« onRestart() - Called when the activity is about to restart after having previously been stopped by the runtime
87

Handling Android Activity State Changes

system.

onStart() — Always called immediately after the call to the onCreate() or onRestart() methods, this method
indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

onResume() - Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

onPause() - Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

onStop() — The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

onDestroy() — The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a
call will not always be made to onDestroy() when an activity is terminated.

onConfigurationChanged() - Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:

onAttach() - Called when the fragment is assigned to an activity.
onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

onActivityCreated() - The onCreate() method of the activity with which the fragment is associated has
completed execution.

onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and
restoring the dynamic state of an activity:

onRestoreInstanceState(Bundle savedInstanceState) — This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

onSavelnstanceState(Bundle outState) — Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestorelnstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

88

Handling Android Activity State Changes

When overriding the above methods, it is important to remember that, with the exception of
onRestorelnstanceState() and onSavelnstanceState(), the method implementation must include a call to the
corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:
protected void onRestart () {

super.onRestart () ;

Log.1i(TAG, "onRestart");

}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestorelnstanceState() and onSavelnstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are
considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

13.5 Lifetimes

The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

« Entire Lifetime -The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating.

« Visible Lifetime — Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

» Foreground Lifetime - Refers to the periods of execution between calls to the onResume() and onPause()
methods.

Itis important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 13-2:

e B
onCreate()

@ Y B

(onStart())(—(onRestart())
¥ A

| onRestorelnstanceState() |

onResume()

| onSavelnstanceState() I

A 4

Figure 13-2

Entire Lifetime
Visible Lifetime
Foreground Lifetime

89

Handling Android Activity State Changes
13.6 Foldable Devices and Multi-Resume

As discussed previously, an activity is considered to be in the resumed state when it has moved to the foreground
and is the activity with which the user is currently interacting. On standard devices an app can have one activity
in the resumed state at any one time and all other activities are likely to be in the paused or stopped state.

For some time now, Android has included multi-window support, allowing multiple activities to appear
simultaneously in either split-screen or freeform configurations. Although originally used primarily on large
screen tablet devices, this feature is likely to become more popular with the introduction of foldable devices.

On devices running Android 10 and on which multi-window support is enabled (as will be the case for most
foldables), it will be possible for multiple app activities to be in the resumed state at the same time (a concept
referred to as multi-resume) allowing those visible activities to continue functioning (for example streaming
content or updating visual data) even when another activity currently has focus. Although multiple activities can
be in the resumed state, only one of these activities will be considered to the topmost resumed activity (in other
words, the activity with which the user most recently interacted).

An activity can receive notification that it has gained or lost the topmost resumed status by implementing the
onTopResumedActivityChanged() callback method.

13.7 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration
changes. This is achieved by adding an android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted
in the event of configuration changes relating to orientation or device-wide font size:

<activity android:name=".MainActivity"
android:configChanges="orientation|fontScale"
android:label="@string/app_ name">

13.8 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered

90

Handling Android Activity State Changes

starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

13.9 Summary

All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important in order to fully understand the new approaches
to lifecycle management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

91

Chapter 14

14. Android Activity State Changes by
Example

The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime. In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

14.1 Creating the State Change Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the Start a new Android Studio project quick start option from the welcome screen and, within the resulting
new project dialog, choose the Empty Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Upon completion of the project creation process, the StateChange project should be
listed in the Project tool window located along the left-hand edge of the Android Studio main window.

The next action to take involves the design of the user interface for the activity. This is stored in a file named
activity_main.xml which should already be loaded into the Layout Editor tool. If it is not, navigate to it in the
project tool window where it can be found in the app -> res -> layout folder. Once located, double-clicking on
the file will load it into the Android Studio Layout Editor tool.

<z activity_main.xml|

=Code ZHSplit EXDesign

Palette Q& —| €& & 0OPixelv 29 v (© AppTheme ~ » Attributes Q & —
Common TextView ® U 0dp, Jx 4 I (%} <unnamed>
Text Button “
Bt ImageView
g RecyclerView Declared Attributes + =
Widgets <fragment> layout_width match_parent ~
Layouts ScrollView layout_height match_parent | v
i Switch N T
Containers F context MainActivity
Google
Layout
Component Tree a — layout_width match_parent
ConstraintLayout layout_height match_parent ~
TextView "Hello World!" visibility v
& visibility v

Common Attributes

minWidth
maxWidth

minHeight

Figure 14-1

93

Android Activity State Changes by Example

14.2 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello world!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 14-2.

‘ z
&

Figure 14-2

When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,
the input will default to upper case characters. Input type settings may also be combined.

For the purposes of this example, we will set the input type to support general text input. To do so, select the
EditText widget in the layout and locate the inputType entry within the Attributes tool window. Click on the flag
icon to the left of the current setting to open the list of options and, within the list, switch off textPersonName
and enable text before clicking on the Apply button. Remaining in the Attributes tool window, change the id of
the view to edit Text.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

14.3 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.java file which
should already be open in an editor session and represented by a tab in the editor tab bar. In the event that the file
is no longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor. Once loaded the code should read as follows:

package com.ebookfrenzy.statechange;

import androidx.appcompat.app.AppCompatActivity;

94

Android Activity State Changes by Example

import android.os.Bundle;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

}

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented
to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util. Log and declare a tag that
will enable us to filter these messages in the log output:

package com.ebookfrenzy.statechange;

import android.util.Log;
public class MainActivity extends AppCompatActivity {
private static final String TAG = "StateChange'";

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);
Log.i (TAG, "onCreate");

}

The next task is to override some more methods, with each one containing a corresponding log call. These
override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:
@Ooverride
protected void onStart () {

super.onStart () ;

Log.i (TAG, "onStart");

@Override

protected void onResume () {

95

Android Activity State Changes by Example

super.onResume () ;

Log.i(TAG, "onResume");

@Override

protected void onPause () {
super.onPause() ;
Log.i (TAG, "onPause");

@Override

protected void onStop () {
super.onStop () ;
Log.i (TAG, "onStop"):;

@Override

protected void onRestart () {
super.onRestart () ;
Log.1i(TAG, "onRestart");

@Override
protected void onDestroy () {
super.onDestroy () ;

Log.1i(TAG, "onDestroy");

@Override
protected void onSavelnstanceState (Bundle outState)
super.onSavelnstanceState (outState) ;

Log.1i(TAG, "onSavelnstanceState");

@Override
protected void onRestoreInstanceState (Bundle savedInstanceState) {
super.onRestorelInstanceState (savedInstanceState) ;

Log.i(TAG, "onRestoreInstanceState");

)
14.4 Filtering the Logcat Panel

The purpose of the code added to the overridden methods in MainActivity.java is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator
session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

96

Android Activity State Changes by Example

Display the Logcat tool window and click on the filter menu (marked as B in Figure 14-3) to review the available
options. When this menu is set to Show only selected application, only those messages relating to the app selected
in the menu marked as A will be displayed in the Logcat panel. Choosing No Filters, on the other hand, will
display all the messages generated by the device or emulator.

Logcat o —

il Emulator Pixel_3_API_2¢ v No debuggable processes ¥ arbose | Q& Re@ Show only selected applic ¥

= logcat
= 2020-05-26 14:14:44.280@ 1751-2551/? E/GnssHAL_GnssInterface: gnssSvStatusCb: a: input svInfo.flags is 8
2020-05-26 14:14:44.280 1751-2551/? E/GnssHAL_GnssInterface: gnssSvStatusCh: b: input svInfo.flags is 8

Figure 14-3
Before running the application, it is worth demonstrating the creation of a filter which, when selected, will

further restrict the log output to ensure that only those log messages containing the tag declared in our activity
are displayed.

From the filter menu (B), select the Edit Filter Configuration menu option. In the Create New Logcat Filter dialog
(Figure 14-4), name the filter Lifecycle and, in the Log Tag field, enter the Tag value declared in MainActivity.java
(in the above code example this was StateChange).

@ ® Create New Logcat Filter
+ - Filter Name: LifeCycle
Specify one or several filtering parameters:
Log Tag: Q- StateChange [x) Regex
Log Message: Q- Regex
Package Name: Q- com.ebookfrenzy.statechange @ [Regex
PID: |
Log Level: Verbose [T
? Cancel e

Figure 14-4
Enter the package identifier in the Package Name field and, when the changes are complete, click on the OK
button to create the filter and dismiss the dialog. Instead of listing No Filters, the newly created filter should now
be selected in the Logcat tool window.
14.5 Running the Application

For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 14-5 below, select the Run -> Run... menu option or
use the Shift+F10 keyboard shortcut:

@t 5 app v LPixel 3API29 v | & = 1 B
Run 'app' (™R) .

Figure 14-5

Select the physical Android device from the Choose Device dialog if it appears (assuming that you have not
already configured it to be the default target). After Android Studio has built the application and installed it on

97

Android Activity State Changes by Example
the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered (taking care to ensure
that the Lifecycle filter created in the preceding section is selected to filter out log events that are not currently
of interest to us):

Logcat -

B Emulator Nexus_5X_AP|_26 Android 8.0.0, APl 26 [&) com.ebookfrenzy.statechange (4041) [& Verbose [. 4 Regex LifeCycle 1T

©9-08 16:53:24.775 4041-4841/com.ebookfrenzy.statechange I/StateChange: onCreate
09-08 16:53:24.776 4041-4041/com.ebookfrenzy.statechange I/StateChange: onStart
09-08 16:53:24.778 4041-4041/com.ebookfrenzy.statechange I/StateChange: onResume

4 B8

Figure 14-6
14.6 Experimenting with the Activity
With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:
onCreate
onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestorelnstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:

onPause

onStop

onSavelnstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. The resulting sequence of method calls in the log should read as follows:

onPause

onStop

onSavelnstanceState

onDestroy

onCreate

onStart

onRestorelInstanceState

onResume

98

Android Activity State Changes by Example

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

14.7 Summary

The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

99

